
Smart Contract
Security Audit Report

Prepared for Fusionist

Prepared by Supremacy

August 26, 2024

1



Contents
1 Introduction ............................................................................................................................ 3

1.1 About Client ...................................................................................................................... 4
1.2 Audit Scope ....................................................................................................................... 4
1.3 Changelogs ....................................................................................................................... 4
1.4 About Us ............................................................................................................................ 5
1.5 Terminology ...................................................................................................................... 5

2 Findings ................................................................................................................................... 6
2.1 Medium ............................................................................................................................. 7
2.2 Informational .................................................................................................................... 7

3 Disclaimer ................................................................................................................................ 9

2



1 Introduction

Given the opportunity to review the related codebase of the Fusionist’s Cross-chain
bridge, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract(s) implementation, and provide recommendations for
improvement. Our results show that the given version of smart contracts can be further
improved due to the presence of several issues related to either security. This
document outlines our audit results.

3



1.1 About Client

Fusionist is a game universe with collectable NFTs comprising of three types of
gameplay: Colonize (building simulation), Conquer (turn-based tactics) and Unite
(explore, expand, exploit, exterminate). Players take on the role of Mech Commanders,
running their own planet(s), collecting rare resources, upgrading technology, scanning
blueprints to manufacture Mechs, and constructing production pipelines. They battle
through PvP and PvE battles, build starship fleets for inter-planetary warfare, and
conquer the galaxy. Endurance is Fusionist’s mainnet, social & game oriented
infrastructure layer.

Item Description
Client Fusionist
Type Smart Contract

Languages Solidity
Platform EVM-compatible

1.2 Audit Scope

In the following, we show the on-chain smart contract address used in this security
audit:

• OriginalTokenBridge: 0xf3310e3f0D46FF5EE7daB69C73452D0ff3979Bed
• RemoteTokenBridge: 0x9d0698D9a6D01f1409AC56c5aDF62547b0055915

1.3 Changelogs

Version Date Description

0.1 August 23, 2024 Initial Draft

1.0 August 26, 2024 Final Release

4

https://explorer-endurance-legacy.fusionist.io/address/0xf3310e3f0D46FF5EE7daB69C73452D0ff3979Bed
https://bscscan.com/address/0x9d0698D9a6D01f1409AC56c5aDF62547b0055915


1.4 About Us

Supremacy is a leading blockchain security firm, composed of industry hackers and
academic researchers, provide top-notch security solutions through our technology
precipitation and innovative research.

We are reachable at Twitter (https://twitter.com/SupremacyHQ), or Email
(contact@supremacy.email).

1.5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the
severity of our findings, we determine the likelihood and impact (according to the CVSS
risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in
practice

• Impact specifies the technical and business-related consequences of a finding
• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity.
These severities are derived from the likelihood and the impact using the following
table, following a standard risk assessment procedure.

As seen in the table above, findings that have both a high likelihood and a high impact
are classified as critical. Intuitively, such findings are likely to be triggered and cause
significant disruption. Overall, the severity correlates with the associated risk. However,
every finding’s risk should always be closely checked, regardless of severity.

5

https://supremacy.team
https://twitter.com/SupremacyHQ
https://twitter.com/SupremacyHQ
mailto:contact@supremacy.email


2 Findings

The table below summarizes the findings of the audit, including status and severity
details.

ID Severity Description Status

1 Medium Improper forceWithdraw logic Confirmed

2 Informational Centralized risk Confirmed

3 Informational Lack of comments Confirmed

6



2.1 Medium

1. Improper forceWithdraw logic [Medium]

Severity: Medium                   Likelihood: Medium                  Impact: Medium

Status: Confirmed

Description

In the OriginalTokenBridge::forceWithdraw() function, it will transfer native assets for
emergency withdrawal of user assets. However, the user’s assets transferred into
RemoteTokenBridge are ACE token, and forceWithdraw() is still used to withdraw the native
assets.

199
    //dev: It's only used in really urgent situations, like if the bridge gets
hacked. We use it to prevent any further losses.

200
    function forceWithdraw(uint256 amount_) external nonReentrant
onlyRole(DEFAULT_ADMIN_ROLE) {

201         address payable to = payable(msg.sender);
202         (bool result, ) = to.call{value: amount_}("");
203         require(result, "Transfer failed.");
204     }

OriginalTokenBridge.sol

218
    function forceWithdraw(uint256 amount_) external nonReentrant
onlyRole(DEFAULT_ADMIN_ROLE) {

219         address payable to = payable(msg.sender);
220         (bool result, ) = to.call{value: amount_}("");
221         require(result, "Transfer failed.");
222     }

RemoteTokenBridge.sol

Recommendation: Revise the code logic as _ace.transfer(to, amount_);.

2.2 Informational

2. Centralized risk [Informational]

Status: Confirmed

Description

In cross-chain system logic, its key features are controlled by the EOA privilege account.
Including ORIGINAL_BRIDGE_VALIDATOR_ALICE, SIDE_BRIDGE_VALIDATOR_BOB,
FINANCE_VALIDATOR_CHARLIE, and DEFAULT_ADMIN_ROLE.

Our analysis shows that privileged accounts need to be scrutinized. In the following, we
will examine privileged accounts and the associated privileged access in the current
contract.

7



Note that if the privileged owner account is a plain EOA, this may be worrisome and
pose counter-party risk to the protocol users. A multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to
eliminate the administration key concern by transferring the role to a community-
governed DAO. In the meantime, a timelock-based mechanism can also be considered
as mitigation.

Recommendation: Initially onboarding could can use MPC wallets or multi-sig wallets
to initially mitigate centralization risks, but as a long-running protocol, we recommend
eventually transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary
timelocks.

Eventually, activate the normal on-chain community-based governance life-cycle and
ensure the intended trustless nature and high-quality distributed governance.

3. Lack of comments [Informational]

Status: Confirmed

Description

Throughout the codebase there are numerous functions missing or lacking
documentation. This hinders reviewers’ understanding of the code’s intention, which is
fundamental to correctly assess not only security, but also correctness. Additionally,
comments improve readability and ease maintenance. They should explicitly explain the
purpose or intention of the functions, the scenarios under which they can fail, the roles
allowed to call them, the values returned and the events emitted.

Recommendation: Consider thoroughly documenting all functions (and their
parameters) that are part of the smart contracts’ public interfaces. Functions
implementing sensitive functionality, even if not public, should be clearly documented
as well. When writing comments, consider following the Ethereum Natural Specification
Format (NatSpec).

8



3 Disclaimer

This security audit report does not constitute investment advice or a personal
recommendation. It does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any other
product, service or other asset. Any entity should not rely on this report in any way,
including for the purpose of making any decisions to buy or sell any token, product,
service or other asset. This security audit report is not an endorsement of any particular
project or team, and the report does not guarantee the security of any particular
project. This audit does not give any warranties on discovering all security issues of the
smart contracts, i.e., the evaluation result does not guarantee the nonexistence of any
further findings of security issues, also cannot make guarantees about any additional
code added to the assessed project after the audit version. As one audit-based
assessment cannot be considered comprehensive, we always recommend proceeding
with independent audits and a public bug bounty program to ensure the security of
smart contract(s). Unless explicitly specified, the security of the language itself (e.g., the
solidity language), the underlying compiling toolchain and the computing infrastructure
are out of the scope.

9


	Introduction
	About Client
	Audit Scope
	Changelogs
	About Us
	Terminology

	Findings
	Medium
	Informational

	Disclaimer

